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8Ult<ABY 

This report presents the results of a study of the Influence of higher 

order and nonlinear effects on the free vibration behavior of thin, cir- 

cular cylindrical shells. A recent solution utilizing the Karman-Donnell 

strain-displacement relations is examined and criticized. A new solution 

is carried out which removes the basis for criticism and discloses the 

existence of a nonperiodic vibration behavior, a phenomenon heretofore 

unknown. Further, solutions are obtained using the strain-displacement 

relations deduced by Sanders and applied, in an appropriately modified 

manner, by Mayers and Rehfield to the shell postbuckllng problem. The 

effect of the improved strain-displacement relations in predicting the 

vibration behavior attendant to a modal shape possessing a small number 

of circumferential waves is assessed, and recommendations are iiade for 

directing future effort on the problem. 
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INTRODUCTION 

In the past, the problem of the instability of thin, circular cylindrical 

shells subjected to a variety of loadings has been the object of intense 

theoretical and experimental investigation. A closely allied problem, 

that of the vibrations of thin, circular cylindrical shells, has also 

come under careful scrutiny, but not to the same extent nor with the 

apparent success relative to the instability problem. 

The studies related to the vibrating cylindrical shell problem have, for 

the most part, been contained within the framework of linear theory. 

Notable contributions to the early development of the vibrating cylindri-

cal shell problem are contained in the work of Rayleigh,1 Love." FlUgge,J 

and Arnold and Warburton. ' A relatively small amount of work has been 

accomplished concerning the vibrational characteristics outside the realm 

of linear theory with the well-known Karman-Donnell equations. To assess 

the merit of this work and to place the present investigation in proper 

perspective, it is pertinent to dwell somewhat on that part of the liter-

ature which deals specifically with the free nonlinear vibrations of thin, 

circular cylindrical shells. 

The first significant step toward the understanding ana solution cf the 

nonlinear problem emanated from the work of Eric Reissner'0 in 1955. This 

paper, although restricted to the linear theory of thin, shallow elastic 

shells, was the first to show that for vibration in which the oredominant 

motion is radial, the equations of motion admit an important simplification. 

Specifically, for predominately radial motion of shallow shells, Reissner0 

shows that the midsurface inertia terms (that is, the inertia terms due to 

motion in the axial and circumferential directions) can be neglected and 
only minor errors will result. Then, the three coupled simultaneous dif-

ferential equations of motion can be simplified to a system of two simul-

taneous differential equations with the dependent variables being the 

well-known Airy stress function and the radial displacement. This latter 

set of two coupled differential equations, independent of radial inertia 

considerations, becomes the well-known equations governing the static 

instability problem of thin, circular cylindrical shells. The basis for 

1 



this simplified set of equations governing the phenomena of static in- 
7 

stability is contained in an investigation by Donnell.  The work of 
7 

Donnell, complementary to the classical large deflection theory of flat 

plates, is generally referred to today as the Karman-Donnell shell theory. 

Later in 1955, Reissner published a paper,utilizing shallow shell theorjr 

dealing with both the linear and nonlinear nonaxisymmetric vibrations of 

thin, circular cylindrical shells. The portion of the work pertaining 

to the linear theory specializes the earlier work of Reissner to the 

geometry peculiar to a thin, circular cylindrical shell. For infinitesimal 

deflections, Reissner assumes that the radial displacement function is 

representable as a chessboard pattern. That this assumption is valid is 

strongly substantiated by the experimental evidence of Arnold and 
U 5 9 10 

Warburton, ' Gottenberg, and most recently by Koval and Cranch  and 
11 11 

Koval. " In the last-noted reference of Koval,  no mention is made of 

comparison to linear theory, but a straightforward calculation shows that 

the experimental results are almost identical to those obtained using the 
Q 

frequency equation derived by Reissner.  In the nonlinear portion of 

Reissner's study, it is assumed that the nonlinearity has a more pro- 

nounced effect on the arbitrary time function, which modifies the choice 

of deflected shape, than on the deflected shape itself. Hence, the chess- 

board shape is used also for the nonlinear vibration problem. However, 

even though the chessboard deflection pattern is a natural choice for 

linear vibration problems, its selection in the nonlinear problem must 

be more carefully assessed. In particular, it has been well known in 

shell postbuckling problems (see, for example, the work of von Karman 
12 

and Tsien)  that the continuity condition on the circumferential dis- 

placement must be enforced. This basic geometric constraining requirement 

must also be employed in the nonlinear shell vibration problem. However, 

the use of the chessboard pattern leads to a circumferential displacement 

that is not a periodic function of the circumferential coordinate. 
13 

Evensen  was the first to point out that this continuity requirement 

was not satisfied by the choice of deflected shape assumed by Reissner. J 



e ik 
Another solution, similar to Reissner's, was presented by Chu.   Again, 

as pointed out by Bvensen,  the continuity requirement for the circum- 
1^ 

f^rentiaLL displacement was not satisfied. Evensen J  further notes that 
15 in .'i paper presented by Nowinski,  the continuity condition for the 

circumferential displacement is taken into account; as a consequence, 

however, a nonzero radial displacement occurs at the ends of the shell. 
13 On the other hand, the radial displacement condition utilized by Evensen, 

& Ik as well as by Reissner  and Chu,  is that of vanishing radial displace- 

ment at the shell edges. It should be noted, however, that this difference 

in the boundary conditions would not likely cause appreciable difference 

in the vibrating shell problem provided that the modal representation of 

the deflected shape possessed a large number of axial waves. This latter 
13 point is not mentioned by Evensen. 

Ik 15 Chu  and Nowinski  arrived at results which showed that the nonlinear 

vibrational characteristics of the shell exhibited nonlinearity of the 

hardening type (that is, an increase in the radial displacement magnitude 

is shown to lead to an increase in the frequency of radial vibration) 

which, in some cases, could be strongly nonlinear. These findings were 

challenged by Evensen,  who claimed that the nonlinearity was of the 

softening type (that is, an increase in the radial displacement magnitude 

is shown to lead to a decrease in the frequency of radial vibration) and 

was only slightly nonlinear. 

In the latter part of 1965, Evensen and Pulton  presented a paper on the 

nonlinear dynamic response of cylindrical shells which is an expanded 

version of Evensen's  original investigation. Evenjen and Fulton 

arrive at results which modify Evensen's  original conclusion (that 

is, that the shell exhibits either hard or soft behavior depending 

upon the numerical values of the wavelength parameters attendant to 

the assumed nodal shape). The theoretical results are in agreement 
17 with an experiment performed by Clson  in 1965. However, the boundary 

conditions utilized in the werk cf Evensen and Fulton 0 reflect cuppcrted, 

rotationally restrained ends, whereas the experiment conducted by Olson17 

reflects end clamping. 



The objective of the present investigation is to study further i:he non- 

linear free vibrations of thin, circular cylindrical shells on the basis 

of considerations heretofore excluded from theoretical work appearing in 

the literature. It is shown that the energy level (potential plus kinetic) 

associated with a given modal shape is an important consideration in the 

nonlinear free vibration problem. The initial portion of the study, based 

upon the Karman-Donnell equations, reveals that the valid solution, cor- 

responding to a modal pattern possessing a large number of axial waves and 

described in terms of free parameters, is the one that reflects minimum 

energy considerations, rather than the one that requires the vibration 

behavior to be periodic.  This latter condition is utilized by Evensen 

and Fulton in Reference 16. It is clearly demonstrated that minimum 

energy considerations for a free variation of the modal pattern assumed 

in Reference 16 lead to a nonperiodic motion for the free nonlinear 

vibrations of thin, circular cylindrical shells. Further, when the 

number of axial waves in the modal pattern is small and the influence 

of boundary conditions must be acccunted for, the adoption of a more 

general deflected shape than that employed in Reference 16, but satis- 

fying the same boundary condition, again reveals the existence of a 

nonperiodic motion.  In this latter case, the nonperiodic motion re- 

flects an energy level, for identical initial conditions, equal to that 

associated with the deflected shape chosen in Reference 16. The non- 

periodic motion, in all cases investigated, appears to be almost periodic. 

This behavior has important implications concerning the interpretation of 

the results obtained in experimental investigations. 

The present study is not limited, as are the previously referenced non- 

linear studies, to vibrations where there are a large number of circum- 

ferential waves present. That there are a large number of circumferential 

waves is the basic assumption justifying the utilization of the Karman- 

Donnell equations. Hence, to surmount the restriction on the use of the 

Karman-Donnell formulation of the shell problem when the number of cir- 

cumferential waves is small, it is necessary to employ a more accurate 

set of strain-displacement relations and, at the same time, to retain 

the midsurface inertia terms. The observations by Reissner * that 



midsurface inertia terms may be neglected when the number of circum-

ferential waves is large can no longer be invoked. 

The more accurate strain-displacement relations employed are attributed 

to Sanders"*"® and were used, in a modified form, by Mayers and Rehfield1'' 

in a study of the postbuckling characteristics of thin, circular cylin-
19 drical shells. As illustrated by Mayers and Rehfield, the postbuckling 

solutions obtained on the basis of the modified Sanders relations can be 

utilized to establish the range of validity of elastic, large deflection 

solutions (specifically, those based on the Karman-Donnell formulation) 

in terms of shell radius-to-thickness ratio. The ramifications of these 

findings relative to the nonlinear shell vibration problem are pursued. 

Differential equations of motion and the attendant boundary terms are 

developed on the basis of a variational procedure. Approximate solutions 
of the equations are obtained, and the results presented clarify former 

work and yield new information regarding the nonlinear vibrational char-
acteristics of thin, circular cylindrical shells. 

5 



THEORETICAL CONSIDERATIONS 

3TRAJ«-DI3rUCPOT RELATIONS 

The ctralr.-dl «placement relations used in this study were deduced by 
If Sanders.        For the thin, circular cylindrical shell, the mldsurface 

strains can be reduced to the form 

«here 

€y     »       + -  (flpJ (1) 
x dx        2      x 

c      - + " (<PV) (2) 
y dy       R       2     y 

0 ^V^t ,,. 
7**        by      bx       *W 

^t 
x dx 

(?•?) Oy   -   -l-^-) (5) 

The total strains are then given by 

C       ■     €     + Z/C (6) 
XXX v   ' 

€       -     €0   +   2*C (?) 
y        y      y 

'xy   ■   V + 2ZKxy (8) 

where    ■»,,'.%, and    w      (see Figure 1) are the axial, tangential, and 

radial cosponents of displacement, respectively, and 

o^L                        o(pv 

< •   —i    ;    <     '   —«^   :   K 
X dx            y       dy           ^ 2\öy       äx / 

(9) 



Substitution of Equations (l) through (5) and (9) into Equation? (6) 

through (6) yields the strain-displacement relations 
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Equations (10), (ll), and (12) are valid when (l) the Kirchhoff-Love 

hypothesis holds (that is, when a straight line segment that is per- 

pendicular to the middle surface of the undeformed shell remains 

perpendicular to the deformed middle surface while undergoing 

negligible strain relative to its original length), (2) the strains 

and rotations of line elements on the shell midsurface induced by 

the deformation remain small in comparison to unity, although the 

components of the displacements are not necessarily small, and (3) 

the angles of rotation about the normals to the shell midsurface re- 

main negligibly smaller than the rotations out of the midsurface 

throughout the deformation. 

Although the Sanders Equations (10), (11), and (12) appear as a dis- 

placement formulation in terms of a tangential v-displacement notation, 

they can be written in terms of a circumferential v-displacement nota- 

tion to effect a convenient simplification as shown by Mayers and 
10 

Rehfield. ' In the alternate form, the equations become 

=   ^ + 
1 /^f ^V 
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and 

rxy 

2       . 
äv  c*u  öw 5w  v öw    / ö^w   1 äv \ 
— + .- + + 2(2 — + — 1 (15) 
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It may be noted that Equations (13), (11+), and (15) reflect no quadratic 

terms in the midsurface displacements alone. Also, for a large number 

of circumferential waves, the equations can be further simplified by 

elimination cf any v-displacement contributions to the curvatures and 

twist, 

TOTAL POTENTIAL ENERGY 

The total potential energy, in the absence of body forces, consists of 

the strain energy stored in the body and can be expressed as 

r'2r«Vh/2     E    i-,    o a- 
U 

0 0 -h/2 

Substitution of the expressions for the strains from Equations (13), 

(11;), and (15) into Equation (lb) and integration over the constant 

thickness of the shell yield 
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KINETIC ENERGY 

The kinetic energy is the sum of the kinetic energies associated with 

axial, circumferential, and radial velocities, respectively; that is, 

J  2nR +h/2 

T 

0 0  -h/i 

Integration over the constant thickness yields 

i   ' fs fl*   r/auf   /Svr   /d»Vl 

\*!W^^ .?.• 

dxdy :i9) 

VARIATIONAL PRINCIPLE 

The application of Hamilton's principle requires that the simultaneous 

first-order change in the Lagrangian    (L = T-U)    ,   integrated over a 

specified time interval,  with respect to admissiole variations in the 

degrees of freedom characterizing the state of strain (namely,    u ,  v , 

and   w    ) must vanish; that is. 

6 /     (T-U)  dt    = u,v,w  J (20) 

Enforcement of this condition yields the Euler equations of the variation, 

or the differential equations of motion of the shell,  together with the 

attendant boundary terms. 

EULER EQUATIONS 

The Euler equations  (that is,  the displacement equations of motion), 

valid for both periodic or nonperiodic notions,  resulting from the 

variation PJ'G given by 
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(l-v2) öy  ( V öy Löx + 2 Vöx / J j   "  (l-v2) R   ( öy ' R 

1 /öw\2      v öw föu      1 /öwV2"! | Eh     ö     [ v p 

2 löy/       Roy Löx      2\öx/J)       (l-y2) öy  ( R L 

R      2 \öy/       R\öy/J R Löx      2 \öx/ J) 

'öv 

öy 

(22) 

(Continued) 
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Eh 5w fSu dv dw dw v 5w"|) 

2{l+v) dy ( dx Ldy dx dx dy R dxjj 

Eh d ( /dw v \PSu dv dw dw v dw~J J d w 

dx ( \dy R 'Ldy dx dx dy R dxj j 
= - ph 

2(l+v) dx ( \dy R 'Ldy dx dx dy R dxj) St 
(23) 

The foregoing displacement equations of motion can be written in a more 

concise form by employing Hooke's law. Since Hooke's law states that 

0 E
 r 0 , 0n °* = 2~ + v O X (1-7) x y 

cr° = E x [e° + v e°] \ {2k) y 7^7) y N 

T° — 0 

^ 2(l+v) 7xy 

then, though utilization of Equation {2k), the equations of motion can 
be written as 

dcr° dx0 d2u 
—* + — ^ = P —5 (25) 
dx dy dt 

dy dx R L y dy dxj (l-v ) 12 \R/ ( dŷ  dx dy 

1 Rl-v) d2v d2v "I ) d2v 
+ * + —w J = P — * (26) 
R L 2 dx2 dy2 J j at2 

and 

, . ! i ( ^ ) . h i L o i ! + To /* + ;\l 
RSjr ax L x Sx ^xay J J 

dy |_ y dy ^ dx J y \ RI 
- h ~ K r + V - I- °-v(-l = • ( ^ ) 

i i 
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The equations can be written In a still more compact form by the Intro. 

ductlun of shear ard bending moment resultants defined as fellows (see 

Fipure 2X• 

.h/2 

M z a dr 
X 

+h/2 

M  ■   /  z 7 iz 
y   J   y 

.h/2 

t 
-h/2 

28: 

^i + ^ac 
öx    öy 

äy äx 

Then use of the definitions given by Equation (26) allows the equations 

of motion to be written as 

and 

^ 0  ^,0 
Off    OT 

o 
Ö U 

Ox   dy      öt'1 

d<T0   ÖT0 

öy   öx R l/dy   ^ ^xj  \Rh/ 

^v 

dt^ 

dx     öxöy ^      äx LXöx     xy\öy   R/J 

+ h 
dy  Lydy       ^öxj     \R/ 

v2 
d w 

Ph —w 
öt2 

(29) 

(30) 

(31) 
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or in the linearized form as 

0 öa      d-r 

ox 

s    0 -s    0 
ocr        at 

dx 

xy 

ay 

c u 

at' 

öy £) 
.2 
n  v 

"V  =  D-7 

(32; 

:33; 
■JZ 

and 

d2M 

öxc 

Ö2M 
+   c 

X3 14 
d^M 

dxdy 3y ©■- 
.2 
o w 

- ch (34} 

The linearized equations of notion,   reduced to the  static case,  are not 

identical to the linear set presented by Sanders in Reference 20.     The 

only difference between the two sets of linear equations i? a consequence 

of the neglect,   in the present development,   of effects associated with 

rotations about the normal to the shell midsurface. 

BOUMDARY CONDITIONS 

The boundary conditions which result from application of Hamilton's 

principle (Equation (20))   are given,  for both periodic and nonperiodic 

motions,  in general form as 

htr 0 0        or 5u   =    0       at        x    =    0,/ (35) 

D (1-v)     /d w       1 Ö- 
hi"    + 2 

^     R      2 Vöxäy      R Sx 

/ d w        1 dv \ 

V tWrVv       R   ?*x  ' 
0      or      6v    =    0      at      x 

v3 
rj   w ä3W 1 ö2v 

+ - -3 + (2-v)  j 
dx äxcty       R öxäy 

+ hT 

+ her 
0 F) 

&w 0      at 0,1 

0,1 

Jo) 

■J7 
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and 

)     =    0      or      5 ( 
öyc     R äy. 

2 2 
' ? w \ / ä w     1 ov (d w v          / d w      1 dv \ / dw V 
—yl+vj—_ + )     =0      or      5 1 —I  =   0      at      x    =    0,/ 
öx^/        Vöy^     Roy/ Vox/ (38) 

REDUCTION TO CLASSICAL EQUATIONS 

A simplified set of Euler equations can be obtained if the Kannan-Donnell 

strain-displacement relations are used in place of the more complicated 

set of strain-displacement relations given by Equations (13), (1*0, and 

(15). The Karman-Donnell strain-displacement relations are given by 

(39) 

m 

2    2 
ÖU  1 / äw \    d w 

ex Ox  2 Vox /    öx^ 

2    2 
äv  w  1 /öw \    ö w 

e 
y = —+ - M -z-? 

öy  R  2 Vöy /    öy 

2 
äu  öv  öw öw    ö""w 

7xy 
= — + — + 2z   

öy  öx  öx öy    öxöy 
(^1) 

Substituting Equations (39),   (^0), and (Ul) into the Lagrangian and 

carrying out the variations in accordance with Hamilton's principle - 

leads to the following simplified set of stress-displacement equations 

of motion for the axial,  circumferential, and radial directions, 

respectively. 

öa0  öT
0 

öx   öy 

ö2u 
= P —* 

öt2 

ba0     öT0 
y ,  xy 

ö2v 

öy   öx öty 

>2) 

[h}] 

ik 



»..I 

D7 w h — 
bx 

0 JW 0  ÜW b 
(T     —   ♦ - h — 

xdx ^öy by 

c ?w  c ^ 
J   —  4  t     — 

dy ^x 
- T e ö2w 

oh —* 
bt2 

Now, if the motion it predoalnantly radial (M vhen ther« are a large 

number of circumferential waves in the modal pattern), then Equations 

(U2), (U3), and {kk)  admit still another and quite drastic simplifica- 

tion, that cf neglecting the midsurface inertia terms. The Justification 

for this simplification was first r.cted ßy ReissntfT.  Thus, with the 

midsurface Inertia tems omitted, the equilibrium. eq*ati<}ns become 

dff0 bS 

and 

1*7 v. - h — 
bx 

ex     .   ay 

^fi       AT0 

^V         °   TV 

by         bx 

0   **] b 
- h — 

by 

'c^      0  ^ 
C     —  ♦   T       — 
y dj-       ""bx 

<hr 

(W) 

t2* /hv       d w 
r ( - 1 - - ch —» 
AR/      5? 

(U7) 

Equations (^5] and (U6) car. now be satisfied identically by the intrc- 

ductlon of an Airy stress fjnetien 7   defined such that 

b2? 

dy 

b2r 

bx- 
(^' 

*y 

b^F 

bxby 

i: 



Then, use of Equations (^5), (^6), and (1*8) permr.ts the lateral 

equilibrium equation to be written as 

"T —~ ' 
k 

DV w 

3  ■ o 
cTF Ö2W' 

äxöy öxäy  äx" by 

n 
Ö'-F 

VR/öX^ 
- ph 

^2 
o w 

ht'- 
m 

A second equation involving the stress function and the radial displace- 

ment can be obtained by combining Equations {2k), (59), i^O), (kl), (45), 

(U6), and (1+8) to yield 

VkF    - 
(-) 

2  2 
a w ö"w 

dx" öy" 

E ^"w 

R a? 
(50) 

This compatibility equation was developed first by Donnell. *  Equations 

(U9) and (50), with the radial inertia term omitted, are one of the 

equation sets commonly referred to as the Karman-Donnell equations; 

these equations govern the large-deflection behavior of thin shells in 

the presence of midsurface forces. 
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METHOD OF SOLUTION 

The differential equations obtained in the previous section which re-

flect the utilization of strain-displacement relations equivalent to 

those of Sanders are three highly nonlinear coupled equations in the 

three dependent variables u , v , and w . On the other hand, 

Karman-Donnell strain-displacement relations, with the midsurface 

inertia terms neglected, admit the reduction to two simultaneous 

differential equations involving only the stress function and the 

radial displacement. This reduced set of two simultaneous equations 

is still highly nonlinear and coupled but is much more manageable than 

the set of three simultaneous differential equations. The solutions 

reflecting the use of both sets of strain-displacement relations are 

obtained by employing the direct method of the calculus of variations 

(that is, the Rayleigh-Ritz method). The solutions corresponding to 

the strain-displacement relations which result in the Karman-Donnell 

equations ((̂ 9) and (50)) are discussed first for the case when a large 

number of circumferential waves are present. The solutions corresponding 

to the Sanders strain-displacement relations (Equations (21), (22), and 

(23)) are discussed subsequently for the case when a small number of 

circumferential waves occurs. 

SOLUTIONS FOR A LARGE NUMBER OF CIRCUMFERENTIAL WAVES 

In all of the existing analytical studies of the nonlinear vibrations of 

thin, circular cylindrical shells, except for the work reported in Ref-

erences 13 and 16, it is assumed that (1) the radial displacement is 

representable by a chessboard pattern, (2) the shell possesses many 

circumferential waves (that is, the shallow-shell behavior), and (3) the 

midsurface inertia terms can be neglected. If indeed there are a large 

number of circumferential waves present, then assumption (3) seems in-

tuitively correct. Assumption (l), however, seems intuitively incorrect. 

As noted by References 13 and 16, utilization of the chessboard pattern 

for the radial displacement leads to a violation of the periodicity con-

dition for the circumferential displacement. Even if the periodicity 

condition relative to a chessboard pattern for the radial displacement 
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could be satisfied by selecting a special homogeneous solution for the 

stress function (Reference 13 alludes to having accomplished this, but 

no details are presented), it still seems intuitively incorrect that the 

radial displacement pattern for a large number of circumferential waves 

would be am exact chessboard pattern. Some consideration must be given 

to the degree of midsurface stretching and, consequently, to the increased 
level of energy that would be necessary to produce a pure chessboard pat-

tern. It would appear that, for finite radial displacements, a displace-
ment pattern which allows the shell to move inward would be more likely 
to occur since this type of displacement pattern should involve less 

energy and, hence, lead to the equilibrium position that the shell would 

seek. This intuitive reasoning, which is founded on a knowledge of shell 

behavior in the axial compression postbuckling problem, is shown in retro-
spect to be justified. 

Fixed Parameter Solution (n Large) 

For a uniform homogeneous shell, the study reported in Reference 16 is 

based on the assumption that the radial displacement which satisfies the 
geometrical constraints of the problem (that is, freely supported ends) 

is representable, save for a shift of coordinate system origin, in the 
following form: 

where ŷ (t) is an arbitrary function of time. The above choice of de-

flected shape, while not being perfectly general, is a discerning one 

in that, in addition to satisfying the geometric boundary conditions, 
it also leads to satisfaction of the continuity constraint on the cir-

cumferential displacement. Further, by restricting the time dependent 
• p 

coefficients to terms proportional to y1(t) and y (t) , the resultant 

motion is forced to be periodic, although not harmonic. 

In Reference 16, the Galerkin procedure was used to obtain the governing 

differential equations; subsequent solution of the equations was carried 

out by means of a perturbation technique. Since the Galerkin integral ~ 

(w \ nx ity TJ 2 
— J = yn ( t ) cos — cos — + - y1 ( t ) cos 
h / 1 x x Xy 6 1 

(51) 
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inproach  li^clyses no information relative to energy level,  the present 

investigation reformulates and solves the problem by using the vari- 

ational approach:    the radial displacement given by Equation (51), to- 

gether with the stresses obtained from Equations (h&) and (50),  is 

substituted into the Lagrangian (see Appendix I for development).    The 

enforcement of the vanishing of the first vs    it on of the Lagrangian 

with respect to   y. (f)    leads to a single St ond-order nonlinear dif- 

ferential equation with    y, (T)    as the dependent variable.    After re- 

duction of the single second-order differential equation to two coupled 

first-order differential equations, the solution is obtained by employing 

a standard Kutta-Merson numerical method. 

The results obtained verify that the curves in Reference 16 representing 

the nonlinear free, but periodic, vibrational characteristics are indeed 

correct.    These results are shown in Figures 3 and k. 

However,  the occurrence of the multivalued conditions of (1) different 

amplitudes for a given wave pattern at a fixed value of the frequency 

and (2)  different wave patterns for the same amplitude at a given fre- 

quency requires the approach of the present analysis,  which establishes 

the lowest level of energy associated with a particular condition.    The 

discussion of this point is expanded in the section on "Results and 

Discussion".    It is also observed that the periodic solution,  which is 

based upon a vanishing radial deflection at the cylinder ends, implies 

that the vibrational behavior is influenced by the boundary conditions 

in the presence of a modal pattern containing a small number of axial 

waves.    Although the case of a small number of axial waves is not the 

general problem being investigated herein, it will be shown in the next 

section that a more general radial dex'lection function (one which results 

in the vanishing of the radial deflection at the shell ends and leads tc 

satisfaction of the v-displacement periodicity condition) does not reflect 

necessarily a periodic motion based upon the minimum energy criterion. 

For long shells (large number of axial waves),  the nonperiodic vibrational 

behavior is shown,  for all cases,  to correspond to the minimum energy 

solution when the parameters of the radial deflection function of Reference 

16 are free rather than fixed. 
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Free Parameter Solution (n Large) 

If the shell modal pattern reflects several or more waves in the axial 

direction, then it is reasonable to assume that the boundary conditions 

will not significantly influence the frequency of vibration. Then the 

deflected shape used in the fixed parameter solution of the previous 

section can be made more general and representable as 

0 ■ - 
itx          ny                           2nx 

(t)   cos — cos — + y,(t)  cos   + ysU) (52) 

x y x 

where y, (t) , y--(t) , and yq(t) are arbitrary functions of time. The 

substitution of the radial displacement given by Equation (52) and its 

associated stress function, obtained from Equation v50), into the con- 

tinuity condition for the circumferential displacement yields the re- 

quirement 

y5(t)   =   §yfft) (53) 

Hence, the deflected shape is now given by 

/w v nx Tty 2nx      T)    O 

{*" ) =   y1(
t) cos — cos — + YA^) 

COS
 — + - y1(t) 

Vh / X X ' A 6 
(54) 

x y x 

The substitution of the radial displacement given by Equation (5*0;  to- 

gether with the stresses obtained from Equations (kS) and (50),  into the 

Lagrangian (see Appendix I for development),  and enforcement of the 

vanishing of the first variation of the Lagrangian with respect to 

y1(T)    and   y,^)    lead to two second-order nonlinear differential 

equations with   y-,^)    and   yAt)    as the independent variables.    After 

a change of the independent variable and subsequent reduction of the 

two second-order differential equations to four first-order differential 

equations, the solution is obtained by employing a standard Kutta-Merson 

numerical method. 

A comparison of the maximum radial displacement for the fixed parameter 

solution possessing the same modal shape and the same initial conditions 

is shown on Figure 5.    The free parameter solution,  reflecting only a 
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change in the initial value of   y^    ,  leading tc the minimuni energy 

solution is shown in Figure 6. 

A comparison of the nondimensional strain energy parameter fcr the cases 

where the initial velocities are zero is given in Figures 7,  ■',  and 9 

for different combinations of the modal  shape and initial displacements. 

When the shell modal pacterii reflects a small number of axial waves,   the 

choice of deflected shape,   which enforces the vanishing radial deflection 

condition at the shell ends,, can be made more general than that given in 

Reference 16 and is representable as 

/wv nx !ty     r T    "     1 ^::': 

{-)  ~  y-tCt) cos — cos y.(t) + - :-v-;   ccs — 
W xx      xy    L-        £        J       xx 

2nx      Tj    p 
-   y (t)   cos   + -y^(t) (55) 

3 ^x        8 

The radial deflection    (Equation (55)) leads tc  identical satisfaction 

of the v-displacement periodicity condition.    The resulting solution, 

obtained in a manner analogous to the previous free parameter solution, 

yields a nonperiodic vibrational behavior.    A comparison cf the maximum 

radial displacements,   reflecting Uie different assumed deflection func- 

tions,  is given on Figure 5. 

SOLUTION FOR A SMALL NUMBER OF CIRCUMFEREIv'TIAL WAVES 

For a uniform homogeneous shell, the strain energy and the kinetic energy 

are given by Equations  (.17)  and (18),  respectively.    Functions representing 

the degrees of freedom    u ,   v ,  and    w    ,  which  satisfy the  ccntir.uitv  ccr.- 

dition on the circumferential displacement but are arbitrary with time 

may be taken in the form 

0 = ^ nx jxy 
(t)  cos — cos — 

X X 
x y 

■0- 
itx ny 2jtx 

y,(t)  sin — cos — + y^'t) sin   ccs 
X X ? X 

x y x 
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<D = 
jtx Jty 2jtx 2jty 2ny 

y (t)  cos — sin — + y-,-, (t) cos   sin H y1 ,(t) sin   
y    x   x   Xi-     x    x   ■LJ     X 

x    y x     y y 

where y1(t) , y^t) , y^t) , y (t) , y (t) , y11(t) , and y13(t) are 

arbitrary functions of time. Now, the substitution of Equation (56) in- 

to Equations (17) and (18) and the enforcement of the simultaneous vanish- 

ing of the first variation of the Lagrangian (L = T-U) with respect to 

y1(T) , y3(T) , y5(T) , y (T) , y (T) , y^)  ,  and ylj(T) le^d to a 

set of seven second-order nonlinear coupled differential equations. 

After a change of the independent variable and subsequent reduction of 

the 7 second-order differential equations to Ih  first-order differential 

equations (the details of which are given in Appendix III), the solution 

is obtained by employing a standard Kutta-Merson numerical method. 

The degree and character of the ncnlinearity, reflecting the employment 

of the modified Sanders strain-displacement relations, are shown in 

Figores 10 and 11 for the case of finite initial displacements but zero 

initial velocities. 
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RESULTS AND DISCUSSION 

In the free vibration of a physical system represented or idealized by 

a set of linearized equations, the magnitude of the resulting displace-

ments and the energy associated with these displacements is indeterminate. 

However, if the equations representing the physical system are not lin-

earized, the displacements and the attendant energy then possess a unique 

determinate value for any given set of initial conditions. 

It is known that in the solution of the postbuckling problem of a thin, 

circular cylindrical shell, the determination of the minimum energy is of 

primary importance. One of the solutions given in Reference 12 predicts 

that the shell will be in tension in the postbuckled state under the ac-

tion of an applied compressive end load. This predicted solution is 

obviously incorrect, as is pointed out in Reference 21. The solution is 

rejected because it does not, in general, represent the minimum energy 

for the particular choice of radial deflection function selected. Hence, 

since energy considerations are important in the understanding and compre-

hension of the nonlinear shell postbuckling problem, it would appear that 

these same considerations would prove to be vitally important to any solu-

tions of the nonlinear shell vibration problem. 

That the energy level for a given modal shape might be an important con-

sideration has not been brought out or explored to date. The most advanced 

solution of the nonlinear shell vibration problem (Reference l6) makes no 

mention of energy considerations relative to the assumed modal shape. It 

is stated in Reference lU that, for a large number of circumferential waves, 

the square wave pattern (that is, the chessboard pattern) has the least 

strain energy. However, this statement is not correct, and this point is 

discussed later in this section. 
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The deflected shape chosen in Reference 16 (that is, the fixed parameter 

solution reflecting a large number of circumferential waves) is a judicious 

choice. It has been shown in References k,  5, 9, 10, and 11 that the chess- 

board pattern is indeed the pattern which the shell -eeks when the displace- 

ments involved are infinitesimal. Hence, it would seem logical to assume 

that a slightly modified chessboard pattern might emerge as the modal pat- 

tern when the displacements are increased from infinitesimal to finite 

values. In the analogous shell buckling problem (see, for example Ref- 

erences 12 or 22), three of the most important terms' in the representation 

of the radial deflection are those selected in Reference 16. In addition, 

the deflected shape selected in Reference l6 reflects zero radial displace- 

ment at the ends of the shell and leads to a periodic solution in time when 

the continuity condition on the v-displacement is enforced. 

Still another important facet in the understanding of the nonlinear free 

vibration problem nf a thin, circular shell involves an analogy to the 

static instability problem. In the nonlinear shell postbuckling problem 

(see. for example. Reference 22), the simultaneous minimization is made 

with respect to the iiee  parameters in the assumed deflected shape and 

also with respect tc the modal wave parameters ^ and r| . As such, 

the number of axial and ««ircumferential waves is continuously varying as 

the minimization is accomplished. However, the shell instability problem 

is treated by means of a static analysis, and a slightly different approach 

is necessary in the free vibration problem. In the linear and nonlinear 

free vibration problem, the basic assumption is introduced that the wave 

parameters n and TJ are not variables but are constant. This assump- 

tion essentially implies that, if an experiment were being conducted, and 

if the modal shape and modal lines (w = 0) could be detected, then this 

modal shape and its modal lines would not vary with time, The implication 

of this assumption relative to the assumed modal shapes chosen in the pre- 

vious section is discussed subsequently. 
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Figures 3 and k depict the frequency behavior for the resultant periodic 
motion as a function of the amplitude. The nonlinearity of the resulting 

motion and the degree of hardness or softness of the system are highly 

dependent upon the value of the wave parameter TJ ; for the same initial 

displacement (assuming an initial velocity of zero), the nonlinearity 

becomes more pronounced as the value of TJ increases. Hence, for a 

particular shell geometry (fixed (h/R) ) and a fixed set of initial 

conditions, the degree of nonlinearity is increased as the number of 

circumferential waves becomes larger. 

It can be further noted from Figures 3 and U that the character of the 

nonlinearity is dependent upon the value of the full wave aspect ratio 

n . In general, the results show that the vibrations usually exhibit 

a softening character when n < 1 and a hardening character when p > 1 . 

In the present analysis, the strain energies associated with the various 

choices of initial conditions and wave parameters have been determined. 

Several values of the energy appear on Figures 3 and h. In particular, 

it is noted that at a certain set of fixed initial conditions (an initial 

displacement of unity and an initial velocity of zero) the energy increases 

considerably as Ihe value of the full wave aspect ratio p. increases (see 

Figure k). This is more clearly shown in Figare 12. In a like manner, the 

increase in energy associated with an increase in the wave parameter tj is 

shown on Figure 13. 

It is noted that at the crossover points on Figure 3, the energies are not 
::.he same. For instance, at the point corresponding to the coordinates 

y^ = 1.91 and = 0.75 , the energy associated with the n = 1 

modal shape is 185$ higher than the energy associated with the n = 0.707 

modal shape. This indicates that for the same frequency and displacement, 

the modal shape is dependent upon the energy. Hence, in an experiment 

where a large frequency spectrum is examined, certain modes may never 

appear if the vibration excitor cannot inject sufficient energy to the 

shell. This is particularly true for the higher levels of energy which 

occur for n > 1 . 
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Another point not mentioned in Reference 16,  but worthy of mention here, 

can be noted in Figure Ik,  which is a partial plot of the modal shape 

for the listed choice of deflected shape. As can be seen in Figure Ik, 

the aspect ratio is not constant but is variable. However, if the whole 

wavelength of modal shape is considered and the aspect ratio of the wave- 

form is taken as the average ever this whole wavelength, then it can be 

considered as a constant. 

Further, it should be pointed out that the solution obtained in Reference 

lo is presumably valid for the range of values of the wave parameter;; 

presented. As such, the solution should be valid when the number of 

axial waves is large or small. However, it appears that while the 

solution presented in Reference 16 is the most advanced solution to 

date, new insight into the problem is gained through energy considera- 

tions. The result of freeing all parameters in the assumed radial de- 

flection functions, compatible with assuring the continuity condition 

on the v-displacement, leads to nonperiodic motions when the number of 

axial waves is either large or small. Also, although the motion is non- 

periodic, strictly speaking, in certain cases it appears similar to the 

periodic fixed-parameter solution (see Figures 5 and 6). Hence, too 

casual an observation of experimental results might lead to the erroneous 

conclusion that the motion is periodic. 

When the number of axial waves is small, the energy levels reflecting the 

deflected shapes (Equations (51) or (55)) are identical for the present 

choice of initial conditions, but the more general choice of deflected 

shape (Equation (55)) leads to a nonperiodic motion while the solution 

of Reference 16 (that is. Equation (51)) leads to a periodic motion (see 

Figure 5)- Although the case of a small number of axial waves is not the 

case of interest for the present investigation, it is highly probable that 

introducing a still more general radial deflection function for the "freely 

supported" case will yield a nonperiodic solution which possesses a lower 

energy level than that associated with the radial deflection functions 

given by Equations (51) and (55). This conjecture is based on the known 

tendency for thin cylinders deformed into many waves to depart more and 

26 



more from -he chessboard modal pattern as larger and larger amplitudes 

of the radial deflection occur. 

When the number of axial waves is large, the nonperiodic solution, which 

reflects the radial deflection given by Equation (5M, leads to a lower 

energy than the periodic solution (Equation (51)). The lower energy, 

associated with the nonperiodic solution, can be seen on Figures 7, 8, 

and 9. On Figure 7, the minimum energy occurs almost identically at 

the value of y^ which Reference l6 employs. That is, however, only 

chance occurrence. In Figure 8, the true minimum energy solution re-

flects a significant difference in the value of from that which 

was utilized in Reference 16. Further, it is interesting to note that 

a lower value of the y^ displacement shifts the y^ value for the 

minimum energy from a higher to a lower value. From this observation 

and a perusal of the strain energy expression for the free parameter 

solution (see Equation (68)), an important physical consequence can be 

deduced. As the value of y^ becomes smaller and smaller (that is, as 

it approaches infinitesimal values), the minimum point shifts farther 

and farther to the left; this leads to the conclusion that for infinitesimal 

values of y^ , the minimum energy is the solution corresponding to 

y, = 0 . This observation, coupled with the fact that yn < 1 implies 
2 that y^ « 1 , leads to the conclusion that in approaching the limit 

of infinitesimal displacements, the least energy solution reflects the 

chessboard pattern. That this is true can also be deduced from Figure 9. 

This figure shows that for a small value of displacement (ŷ  = 0.01) , 

the minimum energy solution exists for y^ = 0 ; hence, further credence 

is given to the deduction discussed above. This deduction is important. 

It shows that only when the displacements are very small is the minimum 

energy solution representable as a chessboard pattern; it also shows that 

for finite displacements of the order of magnitude of the shell thickness, 

the minimum energy is related to a slightly modified chessboard pattern. 

This shows why in the linear, small displacement experimental studies 

(References U, 5, 9, 10, and 11), the predominant evidence indicated that 

the chessboard pattern was the actual pattern developed by the vibrating 

shell. 
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Still another and important consideration deals with the validity of 

the solution concerning the rotation limits allowable within the scope 

of Karman-Donnell theory. This consideration was used in Reference 19 

in discussing limitations on the validity of several well-known solu- 

tions of the postbuckled shell problem. The maximum rotations must be 

small in comparison to -unity (5 percent is considered herein to be the 

limiting value). Then, Figures 15, 16, 17, and 13 show conservative 

estimates of the limitations inherent in the solution. The severe 

limitations on the ^ = 2 case (Figure 18) should be noted. For a 

y, = ^ , the R/h of the shell must be greater than or equal to 4500 

to be within the range of allowable rotations. Thus, for shells which 

are in the range of practical interest (100 < r < 3000) , the validity 

of the present solution would have to be restricted (for the n = 2 

case) to smaller amplitudes.  It may be noted further that the restric- 

tions on the validity of the solutions are less stringent for other 

values of yi    (see Figures 15, 16, and 17). Hence, unless the displace- 

ments experienced by the shell are relatively large, the limitations 

concerning the allowable rotation do not appear to be critical for the 

free vibration problem. However, these limitations could become con- 

siderably more important, for example, in a dynamic buckling or a forced 

vibration study. 

For vibration with low values of n , the Sanders strain-displacement 

relations have been used and the midsurface inertia terms retained. With 

the retention of the midsurface inertia terms, the occurrence of three 

frequencies for each given modal configuration is possible (see, for 

example, References k  and 5). However, each of the frequencies will 

have different amplitude ratios; of the three possible values of the 

frequency, the important one is that associated with the primarily 

radial motion of the shell walls. This value is several orders of 

magnitude lower than either of the other two, which are associated 

primarily with axial and circumferential motions, respectively. The 

deflected shapes and the attendant initial conditions assumed in this 

investigation again reflect the interest in only the motion which is 

predominantly radial. 
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Due to the complexity of this nonlinear shell vibration problem, the 

free vibration solutions presented herein are based only upon the basic 

chessboard modal pattern. For small amplitudes, the chessboard pattern 

continues to provide a periodic motion, which is not necessarily the 

true situation. Thus, where quantitative rather than qualitative behavior 

is of prime importance, the chessboard pattern must be modified to permit 

the possibility of the occurrence of a nonperiodic vibration behavior. 

In the modal pattern associated with n = 2 , the nonlinearity cf the 

resultant motion, as in the case when the number of circumferential 

waves is large, is highly dependent upon the value of the wave parameter 

Tj . For a fixed number of circumferential waves (here n = 2 ), the 

low values of T^ reflect the behavior of a thin shell, whereas the larger 

values of T) reflect the behavior of a thicker shell. Representative 

curves depicting this behavior are shown in Figures 10 and 11. In 

Figures 10 and 11, it is shown that no detectable nonlinearity is 

observed until the (R/h) ratio is less than 1000 . For gradually 

increasing thickness, the nonlinearity becomes pronounced. In Figure 10 

for a full wave aspect ratio of unity, the ratio of nonlinear to linear 

frequency for (h/R) = 1/100 and (w/h) = 16 reaches 1.165 or lS.% 

beyond that which linear theory would predict. In Figure 11 for a full 

wave aspect ratio of 1/2 , the ratio of nonlinear to linear frequency, 

again for (h/R) = 1/100 and (w/h) = 16 , reaches 1.25 or 2%  over 

that which linear theory predicts. 

For the large values of deflection necessary to produce a pronounced 

nonlinearity when the number of circumferential waves is low, it is 

imperative to ascertain at what point the limitations on the rotations 

are exceeded. Representative values for T^ = O.OU and n = 1.0 are 

shown on Figures 19 and 20. While these limitations are intended to 

be only a qualitative, conservative estimate, it is apparent that the 
2 2 

(cp )  limitation is more critical than the (cp )  limitation.  In 

particular, for r^ = 0.OU and ^ = 1.0 , the data of Figure 20 predict 
2 

that (cf )  will exceed its allowable limit for an (R/h) = 100 some- 

where between the point where the initial y, displacement is between 
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10 and 12. For jr. « 12 , the character of the nonlinearity is given 

in Figure 10. Again, the consideration of the size-of-rotations limita- 

tion on the validity of the theory does not appear to be critical for 

the free vibration problem. However, large amplitude behavior, in con- 

nection with dynamic buckling or forced vibration analyses, could lead 

to restrictions on the validity of solutions for specific shell geometries. 
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CONCLUDING REMARKS 

The governing differential equations and the attendant boundary conditions 

for the nonlinear free vibration of thin, circular cylindrical shells have 

been developed by variational procedures by the use of both the Karman- 

Donnell and a set of appropriately modified Sanders strain-displacement 

relations. Approximate solutions, obtained by the direct variational 

approach, are utilized to re-examine and provide new interpretation to 

established approxinate solutions for shells possessing a large number 

of circumferential waves (that is, when the Karman-Donnell formulation 

is valid). Approximate solutions, which reflect the use of the modified 

Sanders formulation for shells possessing a small number of circumferential 

waves, are obtained and are believed to be the first application of this 

higher order shell theory to a nonlinear free vibration problem. 

The solutions, which reflect the utilization of the Karman-Donnell for- 

mulation for a representative assumed modal shape possessing a large or 

small number of axial waves, reveal the existence of nonperiodic motions. 

When it is reasonable to assume that the boundary conditions at the shell 

ends will not significantly affect the frequency of vibration (that is, 

when the modal shape possesses a large number of axial waves), the non- 

periodic solution reflects a lower energy level than the established 

periodic solution which always implies the boundary condition of "freely 

supported" ends. When the boundary conditions have a more pronounced 

effect on the vibration behavior (that is, when the modal shape possesses 

a small number of axial waves), the resulting motion in the first approxi- 

mation for "freely supported" ends is again nonperiodic, reflecting, in 

the present development, an energy level equal to that for the periodic 

solution. Although the solution corresponding to a small number of 

axial waves was not the general case under investigation, it nay be 

conjectured that the introduction of a more general deflection function 

than the one employed will result in a nonperiodic motion reflecting a 

lower energy level than the periodic solution.  For the representative 

cases investigated herein, the nonperiodic motions for an assumed modal 

shape possessing either a large or small number of axial waves appear to 
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be almost periodic.     This phenomenon has extreme significance in the 

interpretation of experimental results.     Unfortunately, very little 

experimental information concerning the nonlinear free vibration be- 

havior of thin shells exists. 

When the number of circumferential waves is small,  the Karman-Donnell 

theory becomes invalid and it is necessary to employ a more accurate 

set of strain-displacement relations,   specifically those attributed to 

Sanders,  while at the same time retaining the midsurface inertia terras. 

Due to the inherent complexity of this nonlinear shell vibration prob- 

lem, the solution presented herein is based only upon the basic chess- 

board modal pattern.     This then results in a vibration behavior which 

exhibits pronounced hardening characteristics.    Retention of additional 

terms in the expression for the radial deflection function will permit 

the possibility of the occurrence of a nonperiodic motion which may,   for 

certain representative cases, appear to be almost periodic,  exhibiting 

either a hardening or a softening characteristic. 

For the case when a large number of circumferential waves occurs (Karman- 

Donnell theory),  and for the case when a small manber of circumferential 

waves occurs (Sanders theory), limitations on the two theories are pre- 

sented based upon the magnitude of the allowable rotations at large dis- 

placements.    For the free vibration problem,  relatively large amplitudes 

can be tolerated without exceeding limitations on rotation magnitudes. 

Future effort on the problem of the vibrating circular cylindrical shell 

should include the effects of damping and should consider the problem of 

the nonlinear response of a shell to forced vibration.    However,  the re- 

sults of a theoretical development are most beneficial when they can be 

complementary to the results of an experimental investigation.    The future 

development,  as regards the behavior of the nonlinear free and forced 

vibration of a thin,  circular cylindrical shell,  will rely heavily upon 

the findings obtained from experimental studies.    Certainly, at the least, 

the predicted phenomenon of nonperiodic free v'bration behavior for the 

circular cylindrical shells should be verified in the laboratory. 
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1+0 



1.20 
(h/R) 

1/100 

COS 7 ^ e O » 7 ^ (A 

£ 1.10 1/125 

1/200 

__ 1/400 
~i 1 /1000 ANO 
16.0 SMALLER 

1.00 
8.0 9 . \ 

*1 

rigure 10. Sifect of Finite Deflections on Frequency Ratic Using the 3a 
Strain-Displacement Relations = 1.0) . 

1.30 

(h /R) 
irx cot cot 

1/100 
1.20 

<n 
3 
v. 
tn 
3 

1/123 

1.10 

1 /200 

1 /400 

-J 1/1000 ANO 
16.0 SMALLER 

1.00. 
8.0 

Figure 11. Effect cf Finite Deflections ;r. Freauer.?-.- Ra* J 
Strain-Displacement Relations ^ 



I.OOf-

U 0.50 

0.50 
I 

1.00 
M 

1.50 2.00 

Figure 12. Variation of Strain Energy Parameter With Full 
Wave Aspect Ratio n (T) = 1.00 , y1 = 1.00) . 

0.05 

0.04 

0.03 

0.02 

0.01 

0.25 
_L 

0.50 

n 
0.75 1.00 

Figure 13. Variation of Strain Tnergy Parameter With Wave 
Parameter TJ (n = 0.50 , ŷ  = 1.00) . 
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APPENDIX 1 

DEVELOPMENT OF THE APPROXIMATE SOLUTION FOR A LARGE NUMBER OF 
CIRCUMFERENTIAL WAVES FOR THE FIXED PARAMETER CASE 

This appendix presents a step-by-step development leadinc to the solu- 

tion presented and discussed in earlier sections. 

The governing differential equations were developel earlier and are 

listed again as 

DV w - h 

ra2F ö2w      ä2F 02
W Ö2F    ö2w 

by   öx       äx' by öxöy öxäy/    \R/bx' 

h\ Ö2F 0 w 
Dh (57) 

rtt 

■ 

and 

vV \(^ T ^2    x2  " O V 0 w /E\ O^W 
=    E 

Vxöy/ öx    Sy -\yu (58) 

The deflection function for a shell vibrating in the    nth    mode is given 

by 

(w\ nx iry      Ti    2 2nx      1    ? 
- )   =   YT (t) cos — cos — + - y^ (t) cos   + - y, (t) 
h/1 x xe1 xe1 
' x y x x     e 

y 

Substitution of the deflected shape into Equation (56)  and subsequent 

solution yield the following expression for the stress  function: 

(59) 

2 2 
2Eh V .3 nx «y 

■W-W   I   +  - y^ y-,   I     COS       CCS   — 
(l^¥   \     8 2rj    V Xx Xy 

2 2 
2Eh jx        T 3nx w.2 2 ny      Eh p -ny 

«-« - y    cos 
2]Z ft    1 

Y        ^ n c (60) 
;n^ r e >. 

The deflection function and the stress function giver, by Equations (59) 

and (60) lead to satisfaction of the requirement that  the circumferential 

displacement be a periodic function of the circumferential coordinate. 
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The Lagrangian    (L « T-U)    can be written as follows: 

(U-T) - z 11 h +'/ ■2(1+v) ^ ■ v'] dxdy 

0      0 

I  2nR    /N2   v        />2   \ ä w ö^w /ö w \ 
+ 2v —5-^+ 2(l.v)( — ) 

äx   öy1" \ äxöy / . 
dxdy 

i  2nR />,  v2 

. ^ r r (- dxdy 
2 J ^   Vat/ 

(61) 

The relations between the stresses and the stress function are given by 

Equation  {kB).     Substitution of the deflected shape and the stress func- 

tion into Equation (6l) for the Lagrangian,   after integration over    x 

and   y    , yields 

J.v-l k,     k        6 ,,        /    _2 3 /nEhJ/\-x               ^       V       y" h        /     TJV      1      \ 

\   R    /                  M    16 (1+9M ) (14U )    \         8       2   V 

2U^            2U/               2v 2                          22 
Ty-i)          IM        /211i;\ ^            2            ^         2 

32   )     1+8 (1-v) \     1      2      V l48(l-v )           2li(l-v )    i 

KT)(?)'('-T'0 (62) 

where    T    is a nondimensional independent variable related to the time 

t    by the following relation: 

'   -  5  ' (63) 

The application of the variations^, principle relative to   y, (T)    yields 
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the following Euler equation; 

•      2 1+ 

1+ 

[• 
3ri 8 

T^yi + 

8(1+9^ ) d^v 

3- 2 1+ 

2^ \    6       2n   7 \     8        2V 

3^2 1+ 2                          2 2          n 
y^ I      T) ji                    23 n                n p 
-i   + r (+ 2y    + 2T! y^) +  ^ y    + — j- y1 

8 'J    Wd-v2)            1            1 2k{l-v )    1     l?(l-v  )     . 
(6M 

Equation (61+) is a single second-order differential equation in ■'.he in- 

dependent variable    T    .     By making a change of variable,  the single 

second-order differential equation in    T    is reduced to two coupled 

first-order differential equations in    T .     The required change of 

variable is given by 

dy. 

di 
= y^ :65) 

Then, the two coupled first-order equations in T become 

^ 

di 
=    Vc (66) 

and 

dy2 

dT 

2 1+ 

FT^!] 
3 2 2 , / E \r ^ 

[• 8(l+9n 

2 1+ 

1+8 { 

^T yi +  2T   + 2f   1      (1^2)2\ 8        2T!   V \      8 2n/    8 J 

.:.    s. 2 2   2 -IX 

-^ (+ 2y1  + 2, y^)   + —-^ y    + __ y 

1-v  ) 2l+(l-v  ) 12(l-v .      J ) 
(67) 

Solution of the two coupled differential equations was  carried out  by 

standard numerical techniques in conjunction with utilization oC the 

Burroughs  5500 computer in the Stanford University  Computation Center 
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APPENDIX II 

DEVELOPMENT OF THE APPROXIMATE SOLUTION FOR A LARGE NUMBER OF 
CIRCUMFERENTIAL .WAVES FOR THE FREE PARAMETER CASE 

This appendix presents a step-by-step development of the solution when 

the assumed deflected shape is more general than that used in Appendix I. 

•The deflection function is given by 

(w\ KX ny 2itx 
- j   3    y-^'t)  cos — cos — + y.(t) cos   + y^(t) 
h/            "'"                X            X          ""                 X x            y                             x 

The stress function,   oltained as in Appendix I,  is given by 

2Eh2n      / 1       \ ^x ny 
F - - —JZ (+ V3 ■ 7 yi)cos rcos r 

2Eh2^2 3nx ny     Eh'' 

(66; 

 5-7 Y^Yi cos   cos 1 
(i+9u^)     x -        xx Xy     1^ 

Eh2nc    0 2ny 

/   y^     i;     \ 2nx 
( + — + - y, ] cos   
V    2        r)   7 Xv 

2 
y.   cos   (69) 

J2 V 

The continuity condition for the circumferential displacement is given 

by the following mathematical representation: 

2itR -s 2nR r.   /Ä ^2^,      ..       ,   ,^.2 ■      fHdv f^ri/FF ^F\     w      1/öwf 
/    —dy   =   /      -(-"*-y-"■*)+ ( —J   ^   =   0 (70^ 

0
J       öy £      IEW ZY /    R      2\dy/J 

Substitution of the deflected shape and the stress function into the 

continuity condition yields the following relation: 

1  2 
y* s - y, (71) 5   8  i 

Hence, the deflected shape now becomes 

0 - - nx ny 2nx      T]    p 
,'t 1  cos — cos — + y-,(t) cos   + - y, (t) (72) 

X         X        J             x        8 1_-L   . x y x   
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Substitution of the deflected shape and the stress function into the 

Lagrangian (in a manner exactly analogous to that described in Appendix 1) 

after integration over    x    and   y       yields ,   , 

/nBh3/ V1 1 

(—) (U-T; ■: 

V  T        2 2            ^       / 1 

 T? yly^ + ^T (+ Wiyl " ~ y] 

+ 32y|)  y    +-   + 4yJ  >+ T-    (+y. 
32     ^^      8 \     2 J/ ]     l4£(l-v  ) i 

^        y2 +        1 2M2y2 _ I (^£\U^l\   L   + 1 y2\ 
l+8(l.v2) yi      24(l-v2)  ^ ^ yi      ^ \ E /L\dT  /   \    %    yi/ 

(73) 

The application of the variational principle,  relative to   y,(T)    and 

Voi"1)    > yields two Euler equations.    After the introduction of two 

changes of variable defined by 

dyi 

dT 
=    72*" (7M 

and 

dy, 

dx 
yh (75) 

the two second-order Euler differential equations are transformed into 

four first-order differential equations.     The first two are given by 

Equations  (7^) and (75).    The remaining two equations are 

dy. 

dx 

I 4E 

(-^) 

+ — ^2 ■* 

DC 

+ - f  ^ 

H^f^-^ijf^-y^-^ 
(Continued) 
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V yi  k  \ 1 + :(+r---y3)yi 

2 i+ 
1 H 

2 2 
1 M 

^(1-V 
^ y^ + 

2m-v-) 
y^ + 

1   '   ., .,     2.   •'I   ' ■- 
12(l-v") 

and 
(76) 

dyU / E \ (     ^  F   8^yly3 8^1     / 1       \ 

■K-?-r.) 
k       2 k 

+ — 
3   (1-v) ̂

y3 (77) 

Solution of the four coupled differential equations was carried out by 

standard numerical techniques in conjunction with utilization of the 

Burroughs 5500 computer in the Stanford University Computation Center. 
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APPENDIX III 

DKVELOPMERT OF Tim APPROXIMATE SOLUTION FOR A SMALL 
NUMBER OF CIRCUMFERENTIAL WAVES 

This appendix presents the development of the differential equations of 

motion by the use of the strain-displacement relations deduced by Sanders. 

The deflection functions are given by 

0jtx ny 
=   y,(t)  cos — cos — 

XX 
x y 

1 

2nx 2jtx 0nx        «y «^x        -«y 
=   y-(t)  sin — cos — + yc-(t)  sin   cos   + y7(t) sin   

J                 XX3 XX1                 X x           y x             y                          . x      , 

/v\                               Jtx          try 2jtx          2rty                               2jty 
n(-) =   yQ(t) cos — sin — + y^Ct) cos   sin — + y,-,(t)  sin   
W   ^      Xv   Xp   

iX X     X    XJ      X '            x    y x     y            y 

) (78) 

Substitution of the deflected shapes into the strain energy and the 

kinetic energy expressions (Equations (17) and (18), respectively) after 

integration over x and y yields the following expression for the 

Lagrangian: 

L    =   L 
/nEh^V1 /itEh^V1 

(—)       =   (—)     (U-T) 

Mi 

k 2 

2 2 3 2 

(Continued' 
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2y5 - ^n 

2 k 

12 

,     V   (       2 2 2      /h\      2 )       U-V)   (    r /h\ f 

(79) 
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The application of the variational principle relative to yn(T, , y._(t) . 

y5(f) , y^(t) , , y11(T) > and y13(T) yields seven Euler equation 

The following changes of variables are now employed: 

^ 1 

dT 
= y 2 9 

II 

& 1 5 y io 

dy 3 

dT 
9 ^ 

1 ^
 

* 
|H

 
II y l 2 

, 
dT 

y o 9 
2±± = 

dT 
y l l+ 

*1 s Yr> 
d t ^8 

i'60) 

Next, the seven second-order differential equations (in the independent 

variable T ) are transformed to fourteen first-order differential 

equations. The first seven of the fourteen equations are given by 

Equation (80). The remaining seven equations are 

3. 
^ 2 

dT 
ny1y? 

It 2 

? "1 '0T2] (- -"1 '04 * -(;) ¥n 
+ ; | + *u~yl 

- 2 

(Continued) 



13 

T    o 2 
+ ^iy     - - M yn 

5      8 

+ ^ l^y' ■ lO^l+ (1"v) i'y3"^"^/^^ 
(l-v)    - 2y= - ^xy 

—i   + (l-v) 

5 " "^ll 

k       \[      2 k     \        8     \R/ "        ö 

Wx + 

(l-v) 
+  TM 

6 
(81) 

p8 



dT \pc   /2(l-v   ) 
+ ^i y3 + 2vii   +y9 - y 

m £   + (v-D y3 " ^9 

/h\yiy] 

n 

dT \pc7 2(i-v2) I     5   e   1. 

+ U\|i    + 2y 
U rf-O? 

dx \pc/2(l-vZ) \R/   1 I   8   1    \R/   II 

♦ a  » y, - x my-? 

ud-v) I - 73 - My9 

(82) 

(83) 
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+ i/-
6 \ R > 

'h> 
- I v, 

kRy 

v / h \ 2
 ( l _ v ) 

" i w " 1 "~"U/ + 2(i r|y 

-GH (8U) 

dy 10 

d t pc / 2 ( l - v ) 

+ ?G) + 2y. 
11 

8 - W k 
+ y 9 - y i - 1 -

h \ y l y l l / h \ y l y 1 3 

, R/ 2 

v0,i: y 3 + ^ 2 2 
+ ^ y 5 - - u y x 

( l - v ) /h> 
+ T W w i - y 3 - ny9 - 1 -

' h \ ^ y 1 y 1 3 u y 1 y 1 1 
+1 -

R/ 2 vR/ U 

- 2n( l - v ) 2y s - ^y-uL + 
^ 2 / h \ r - u; 

•rGf- y l y 1 3 +
 y l y l l ( l - v ) / h 2 /h> 

2 2 

8 \ R / ~ ~ 3 \R 
-1 »yiyu + z(:l yn 

( l - v ) /h> 

3 \R> 
y l l 

(8p) 

dy 12 

dT 

(86) 
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and 

dy ik 

dT c / ) , . 2. 
PC / 4 ( J . - V ) - & 

- 0^ + y 9 - y l 

( 1 -v ) 

2 2 
V T y x 

P-YT I — y-J ~~ r 

( l - v ) / h 

Solution of the lU coupled differential equations was carried out b 

standard numerical techniques in conjunction with utilization of th 

Burroughs 5500 computer in the Stanford University Computation Cent 
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